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A stub model is introduced to describe the charge transport properties of a system consisting of an arbitrary
number of noncollinear ferromagnetic or normal reservoirs coupled nonideally to a normal metal chaotic
cavity. We characterize the contacts by a reduced set of parameters which can be used to express the average
value of any charge-transfer cumulant. Explicit expressions of this set of parameters are given for the cases of
ideal ballistic contacts and tunnel junctions. The average conductance and shot-noise power of a two terminal
FNF device with noncollinear ferromagnetic reservoirs are calculated analytically via an extended diagram-
matic method which allows for the importation of all diagrams of the corresponding NNN system. We observe
that the Fano factor exhibits a transition between monotonic and nonmonotonic behaviors as a function of the
reservoir’s relative magnetization angle. A diagram of this transition in the plane of the polarization parameters
is shown. With straightforward modifications, our scheme paves the way for efficient calculations of the
average value of an arbitrary cumulant of the charge-transfer statistics in hybrid devices along with its quantum
corrections.
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I. INTRODUCTION

The great technological potential of magnetoelectronic
systems1 have attracted the interest of many condensed mat-
ter physicists in the last two decades. Particularly, noncol-
linear magnetoelectronics has been an active subarea in re-
cent years.2 Phenomena such as angular magnetoresistance
and spin-transfer torque3 have stimulated the proposal of
novel devices such as spin-flip and spin-torque transistors.2,4

Building on the finite element approach to
superconductor—normal metal hybrid systems,5 Brataas et
al. proposed a circuit theory �CT� for noncollinear
magnetotransport,6 in which the system is represented as a
network containing three kinds of elements: nodes, reser-
voirs, and connectors. The nodes and the reservoirs are de-
scribed by local distribution functions, while the connectors
are characterized by a set of experimentally controllable pa-
rameters. Because of the great quantity of microscopic infor-
mation, irrelevant as far as some transport properties are con-
cerned, which are cutoff by construction, the formal
manipulation in this formalism is relatively simple even for
complex systems. Using this approach, the average spin and
charge currents have been calculated under various experi-
mentally relevant conditions.2 An extension of circuit theory
that accounts for shot noise was put forward in Ref. 7. More
recently, a semiclassical Boltzmann-Langevin theory was
presented to describe a normal diffusive metal connected to
ferromagnetic reservoirs via tunnel contacts8 and the shot-
noise power was calculated taking into account spin-flip
scattering in the normal metal.

A common feature of these approaches is that they are
based on semiclassical schemes, which although quite suit-
able for the description of conventional spintronic devices
may become inadequate for modern devices, such as those
based on semiconductors,9 where quantum interference ef-
fects have been observed.10,11 A fully quantum-mechanical
approach was presented by Waintal et al. in a scattering ma-

trix framework.12 They used random matrix theory �RMT� to
calculate the current-induced torque in an FNF system.
While this theory has as starting point the complete scatter-
ing matrices of the FN interfaces, the final results can be
expressed as a function of only a few number of parameters,
thus showing that it contains a great amount of redundant
information. Building on some results of this approach, a
theoretical scheme, denoted continuous random matrix
theory, has recently been proposed.13 It carefully removes the
irrelevant microscopic information for the calculation of the
average spin and charge currents through the introduction of
some effective parameters and provides a conceptual connec-
tion between quantum and classical approaches such as cir-
cuit theory.

For normal systems with two terminals the circuit theory
equations for the generating function of charge-transfer cu-
mulants were derived from the semiclassical limit of the
scattering approach, both from a diagrammatic perturbative
expansion based on RMT �Ref. 14� and from the saddle-
point equation of the corresponding supersymmetric nonlin-
ear sigma model.15 This connection can be used as a system-
atic tool to remove the redundancy of the random matrix
description via an exact map onto the appropriate nonlinear
sigma model, which contains only the relevant large scale
degrees of freedom.

Motivated by the observation of interference effects in
semiconductor-based spintronic devices and by the above de-
scribed redundancy removal scheme, we propose in this
work a stub model that combines the simplicity of circuit
theory with the generality of the RMT-based scattering ap-
proach. We demonstrate these features by explicitly calculat-
ing the average conductance and the average shot-noise
power of an FNF system in the regime of phase coherent
transport. We observe that the Fano factor exhibits a transi-
tion between monotonic and nonmonotonic behaviors as a
function of the reservoir’s relative magnetization angle. A
diagram of this transition in the plane of the polarization
parameters is shown. Our formalism also provides a proce-
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dure to select a reduced set of parameters for each type of
contact which can be used to characterize the average value
of any observable that can be expressed as a linear statistics
on the transmission eigenvalues such as the cumulants of
charge-transfer statistics. Explicit expressions for the set of
relevant parameters in the case of ideal ballistic contacts and
tunnel junctions are presented. Finally, our approach can be
easily extended to yield a systematic algorithm for the cal-
culation of the average value of higher-order charge-transfer
cumulants along with quantum interference effects such as
the weak localization correction.

The article is organized as follows. In Sec. II we describe
the physical system and introduce the stub model. In Sec. III
we define the reduced set of parameters that are needed to
express any planar diagram of the perturbative semiclassical
expansion. Explicit expressions are given for ideal ballistic
contacts and tunnel junctions. Section IV is devoted to ex-
plain the introduction of the spin degrees of freedom in the
diagrams. The average conductance and the average shot-
noise power are calculated for an FNF system. We show that
the Fano factor exhibits a transition between monotonic and
nonmonotonic behavior as a function of the reservoir’s rela-
tive magnetization angle. A diagram of this transition in the
plane of the polarization parameters is shown. A summary
and conclusions are presented in Sec. V.

II. STUB MODEL

Our model system consists of a normal metal chaotic cav-
ity connected nonideally to an arbitrary number of ferromag-
netic or normal reservoirs. For the sake of generality, we
shall consider the ith reservoir to be characterized by a mag-
netization m� i and connected to a single node through an ar-
bitrary type of contact. The system is assumed to be removed
from equilibrium by the application of a bias voltage and
charge transport takes place in the linear regime. The termi-
nals are supposed to be kept in local equilibrium thus giving
rise to a stationary process. We will neglect any spin-flip
process in both the cavity and the contacts and thus the dwell
time of electrons in the cavity is assumed to be much smaller
than the spin-flip time, �dwell��sf. We also assume that the
dwell time is much bigger than the ergodic time, �dwell
��ergodic, so that the quantum dynamics inside the cavity is
in the universal chaotic regime. Finally, we ignore any in-
elastic process during the observation time, and therefore the
charge transport is fully phase coherent.

Since we are concerned with a hybrid metallic system, we
assume the number of open scattering channels to be large so
that a semiclassical description is justifiable and quantum
interference corrections can be safely neglected. In the lan-
guage of the diagrammatic technique, this means that we are
interested in a selected class of planar diagrams associated
with the dominant semiclassical contribution of the average
charge transfer cumulants in a perturbative expansion. This
particular class is indifferent to the presence or the absence
of time reversal symmetry �TRS� in the system.

The central idea of our formalism is to represent the cha-
otic cavity as a noise generating stub, which is described by
a random unitary matrix from the appropriate circular en-

semble. Stub models have had great success in the random
matrix description of quantum transport, allowing for the in-
clusion of a variety of effects such as the presence barriers,16

crossovers between universality classes,17 and time
dependence.18 It can be shown16 that the total scattering ma-
trix S and the scattering matrix of the cavity S0 are related
via the following matrix stochastic equation

S = S̄ + T��1 − S0R�−1S0T , �1�

where

� S̄ij

Rij

Tij

Tij�
� = �ij � �

r̂i

r̂i�

t̂i

t̂i�
� . �2�

Here S̄ denotes the ensemble average of S, r̂i, r̂i�, t̂i, and t̂i� are
2Ni�2Ni reflection and transmission matrices of the ith con-
tact with Ni open channels and the hat indicates the presence
of the spin structure. The basic constraint of the stub formal-
ism is that the matrix

� = � S̄ T�

T R
� , �3�

must be unitary. All matrices in Eq. �1� are 2NT�2NT, where
NT is the total number of open channels and the factor 2
accounts for spin.

If the angle between the quantization axis �which will be
chosen as the z axis� and the direction of the magnetization
m� i is �i, the elements of the scattering matrix of the ith con-

tact have to be rotated about the direction defined by n̂i= k̂
�m� i /sin �i by using a U�2� operation.12 The reflection ma-
trix, for example, is rotated as

r̂i�n̂i,�i� = R̂i�n̂i,�i�r̂i�0��R̂i�n̂i,�i��†, �4�

where

R̂i�n̂i,�i� = INi
� 	I2 cos��i

2
� − i	� · n̂i sin��i

2
�
 , �5�

r̂i�0� = �ri
↑ 0

0 ri
↓ � , �6�

and 	� is a vector whose components are the Pauli matrices.
The identity matrix INi

, ri
↑, and ri

↓ are Ni�Ni matrices. The
off diagonal elements of r̂i�0� are null because we neglect
spin-flip processes.

We have assumed the cavity to be a normal metal and its
internal dynamics to be in the universal chaotic regime,
therefore we can model our noise source, the scattering ma-
trix S0, as follows

S0 = U � I2. �7�

Here I2 is the identity matrix in spin space and U is a NT
�NT random matrix from the circular unitary ensemble
�CUE�.19 Therefore S0 belongs to a subgroup of U�2NT� with
uniform probability distribution
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P�S0� = P�U� = const. �8�

It follows from Eqs. �1� and �8� that S is distributed accord-
ing to the Poisson kernel,20 which in turn implies that any
statistical property of a transport observable can be written as

a function of S̄ only.
By selecting a representation in which S0 is block diago-

nal, as in Eq. �7�, we maximize the efficiency of the diagram-
matic rules for averaging over the unitary group. The price to
pay is that the other matrices in Eq. �1� have to be trans-
formed to this representation as well, and in this way they
become nondiagonal in spin space, since by assumption at
least one of the angles �i is nonvanishing. This is a feature of
noncollinear transport. When the device has just two termi-
nals, the change in representation can be performed by
means of the following unitary matrix

U =�
INa

0 0 0

0 0 INb
0

0 INa
0 0

0 0 0 INb

� . �9�

The extension of U to the case of a multiterminal device is
straightforward. The nondiagonality in spin space of the ma-
trices mentioned above will bring about some important im-
plications in applying the diagrammatic method, as we shall
describe shortly.

III. RELEVANT PARAMETERS

From all the information contained in the scattering ma-
trices of the contacts, just a set of experimentally control-
lable parameters are needed to characterize the quantum
transport properties of the device. Frequently this set con-
tains only the transmission eigenvalues, i.e., the eigenvalues
of t̂t̂†, where t̂ is the transmission matrix.21 The situation is
more complex in noncollinear magnetoelectronics because of
the loss of commutativity of certain matrices in the extended
spin-channel space. In circuit theory this leads to the intro-
duction of a 2�2 conductance matrix and a 4�4 noise ma-
trix for the characterization of the ith connector as follows:

Gi
s1s1� = Tr�INi

− ri
s1�ri

s1��†� ,

si
s1s1�s2s2� = Tr�INi

− ri
s1�ri

s1��†ri
s2�ri

s2��†� . �10�

These parameters are essential ingredients to the calculation
of the conductance6 and shot-noise power7 using CT.

It can be shown that only some invariants under U�2�
transformations are necessary to express the information
content of a planar diagram. This is a consequence of the
noncrossed topology of this type of diagram. The symmetry
operations can be represented as

Ri,j = �i,jR̂i�n̂i,�i� . �11�

These invariants are general quantities of the form �denoted

 parameters for brevity�


i
s1s1�s2s2�. . .snsn� = Tr�ri

s1�ri
s1��†ri

s2�ri
s2��† . . . ri

sn�ri
sn��†� . �12�

It is a known theorem22 that the invariants under similarity
transformations of a k�k matrix are determined by the trace
of the first k powers of the matrix. Therefore, only the pa-

rameters 
i
s1s1�s2s2�. . .snsn� with n�2Ni are independent.

There is a simple relation between the tensors 
i
s1s1� and


i
s1s1�s2s2� on one hand and the conductance matrix Gi

s1s1� and

the noise matrix si
s1s1�s2s2� on the other. We find


i
s1s1� = Ni − Gi

s1s1�,


i
s1s1�s2s2� = Ni − si

s1s1�s2s2�, �13�

where Ni is the number of open channels in the ith lead.
Following the conventions of Refs. 7 and 23 let us now

show explicit expressions for the 
 parameters in the particu-
lar cases of ideal ballistic contacts and tunnel junctions. In
the first case we have


i
↓↓↓. . .↓ = 
i

↓↓ =
gi

2
�1 + pi� , �14�

while for any other combination of the indices sk ,sk� we have


i
s1s1�s2s2�. . .snsn� = 
i

↑↑ =
gi

2
�1 − pi� , �15�

where gi=Ni
↑+Ni

↓ and pi= �Ni
↑−Ni

↓� /gi. Ni
↑ and Ni

↓ are the
number of open channels for spin up and down, respectively.
We have considered without loss of generality that Ni

↑�Ni
↓.

In the case of a tunnel junction, we obtain


i
s1s1�s2s2�. . .snsn� = 

k=1

n


i
sksk� − �n − 1�Ni, �16�

where 
i
sksk� are the elements of the matrix


̂i =�Ni −
gi

2
�1 + pi� Ni −

gi

2

Ni −
gi

2
Ni −

gi

2
�1 − pi� � ,

where gi=Gi
↑+Gi

↓, pi= �Gi
↑−Gi

↓� /gi, and Gi
↑�Gi

↓� are the con-
ductance of the up �down� channel and is denoted by Gi

ss in
Eq. �10�. Note that there are just two free 
 parameters for a
ballistic contact, while tunnel junctions are characterized by
three independent 
 parameters.

IV. AVERAGING OVER THE UNITARY GROUP

In order to calculate physical observables from the theory,
we need to average functions that are traces in both channel
and spin spaces, involving random S0 matrices. There is a
diagrammatic method for averaging over the unitary group,
which was thoroughly presented and extensively applied in
Ref. 16. Here, we adapt it to our problem. From Eq. �7� we
can write
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�S0�ij,nm,	1	2
= Uij,nm�	1	2

, �17�

where the indices i , j, n ,m, and 	1 ,	2 label direction of
propagation, channel, and spin structure, respectively. The
trace in the spin structure and the � function, shown in Eq.
�17�, bring two additional features to the diagrammatic rules
of normal systems. First, it is necessary to label the dots of a
diagram, that are connected by thick dotted lines with the
same spin label �see, e.g., Fig. 1�. Second, a sum over all
spin indices must be performed at the end of the calculation.
The first feature implies, in the diagrammatic language, that
all T cycles are tensors with respect to the U�2� group.

We are now in position to calculate the average conduc-
tance and shot-noise power of a two terminal FNF system.
We consider the ferromagnetic reservoirs to have magnetiza-
tions whose directions are m� a and m� b and we choose m� a
parallel to the z axis. The vector m� b is considered to be in the
x−z plane, so we have to perform the rotation of the scatter-
ing matrix of the contact b about the y axis, thus n̂= ŷ.

A. Conductance

The Landauer-Buttiker formula for the zero temperature
conductance reads as

G = G0 T̂r�t̂t̂†� , �18�

where G0=e2 /h is the conductance quantum, t̂ is the trans-

mission matrix of the system, and the symbol T̂r stands for
the trace over both channel and spin spaces. Bearing in mind
the transformation shown in Eq. �9� we express the averaged
conductance as

�G� = G0�T̂r�Ca�SCb�S†�� , �19�

where �S�S− S̄ and Ca, Cb are projectors defined as

Ca = �
INa

0 0 0

0 0 0 0

0 0 INa
0

0 0 0 0
� , �20�

and

Cb = �
0 0 0 0

0 INb
0 0

0 0 0 0

0 0 0 INb

� . �21�

Inserting Eq. �1� into Eq. �19�, expanding in powers of S0
and performing the ensemble average we obtain a sum of
ladder diagrams of the form shown in Fig. 1. The directed
thick solid line on the left �right� extreme represents the spin-
space elements of the matrix A= �T��†CaT� and �B=TCbT†�.
The directed thick solid bottom lines in the middle �top lines
in the middle� represent spin-space elements of the matrix R
�R†�. From now on we shall adopt Einstein’s summation con-
vention for spin indices. The information content of the dia-
grams can be conveniently represented in terms of vectors
and matrices defined via the following prescription.

Any quantity of the form Tr�X	1	2
� can be regarded as a

vector X= �Tr X1,1 ,Tr X1,2 ,Tr X2,1 ,Tr X2,2�. Similarly, quan-
tities such as Tr�Y	1	2

Z	3	4
� can be organized as 4�4 ma-

trices Ys1s2
or as 1�16 vectors Ys. In the first case the rows

s1 are determined by the ordered pair of indices �	1 ,	4� and
the columns s2 by �	2 ,	3�. In the latter case the first pair of
indices run prior to the last pair. With these conventions, we
define the matrix

Ls1s2
� Tr�R	1	2

R	3	4

† � , �22�

and the vectors

As � Tr A	1	2
,

Bs � Tr B	1	2
. �23�

Performing the summation over ladder diagrams, we obtain
the following compact expression for the average conduc-
tance:

�G�
G0

= A · �NTI4 − L�−1 · B�, �24�

where A= �Ga
↑↑ ,0 ,0 ,Ga

↓↓� and B= �B1 ,B2 ,B3 ,B4� with

B1 = Gb
↑↑ cos2�

2
+ Gb

↓↓ sin2�

2
, �25�

B2 = sin
�

2
cos

�

2
�Gb

↑↑ − Gb
↓↓� , �26�

B3 = sin
�

2
cos

�

2
�Gb

↑↑ − Gb
↓↓� , �27�

B4 = Gb
↑↑ sin2�

2
+ Gb

↓↓ cos2�

2
. �28�

The superscript � stands for the transpose operation and the
matrix L is shown in the Appendix. The simplicity of Eq.
�24� is already a demonstration of the tractability of the stub
model. By contrast, other approaches give equivalent, but
much more complicated expressions. In Fig. 2 we show the

FIG. 1. Typical ladder diagram from the conductance calcula-
tion. Einstein summation convention is adopted for the spin indices.
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angular dependence of the conductance in units of g=G↑

+G↓ for asymmetric contacts. The free parameters are fixed
as follows ga=g=gb, Ga

↑↓=g=Gb
↑↓, and pa=1 /4. We observe

a nonmonotonic behavior of the conductance as pb grows, as
reported in Ref. 24. For identical contacts, the expression for
the conductance reads as

�G� =
g

2�1 − p2

tan2�

2

tan2�

2
+ ��2/Re��� , �29�

where =2G↑↓ /g, in agreement with the result obtained in
Ref. 6 using circuit theory.

B. Shot-noise power

The main technical appeal of our approach is the possi-
bility to calculate efficiently the average of any charge-
transfer cumulant within the same framework. Here, we shall
demonstrate this by calculating the average second cumulant,
which is the shot-noise power. In the scattering formalism
the zero temperature shot-noise power is given by

P = P0 T̂r�t̂t̂†�1̂ − t̂t̂†�� , �30�

where P0=2eVG0. Since the first term is proportional to the
conductance, we just need to calculate the diagrams associ-

ated with the second moment T̂r��t̂t̂†�2�. A remarkable feature
of the present stub model is the fact that we may import the
diagrammatic structure of a similar calculation in the corre-
sponding NNN system, obtained by substituting the ferro-
magnetic reservoirs by normal ones. These diagrams are
available in Ref. 25. They are shown in Fig. 3 with the in-
sertion of the spin degrees of freedom. All diagrams contain
a central kernel attached to traces of the matrices F	1	2

L and
F	1	2

R , which are defined diagrammatically in Fig. 4. Except
for the first diagram, all kernels are T cycles. Similarly to the
conductance calculation, we represent these T cycles by ma-
trices. So, we define the 16�16 matrix

Ts1s2

2 � Tr�R	1	2
R	3	4

† R	5	6
R	7	8

† � , �31�

the 16�4 matrices

Ts1s2

3 � Tr�B	1	2
R	3	4

R	5	6

† � ,

Ts1s2

4 � Tr�R	1	2

† R	3	4
A	5	6

� , �32�

and the 4�4 matrices

Ts1s2

5 � Tr�B	1	2
B	3	4

� ,

Ts1s2

6 � Tr�A	1	2
A	3	4

� . �33�

It is also convenient to define the vectors

0.3

0.4

0.5

-1 -0.5 0 0.5 1

G
/g

cos (θ)

pb = 1/4

pb = 1/2

pb = 3/4

pb = 1

FIG. 2. Angular dependence of the average conductance in units
of g=G↑+G↓. The value of the parameters are ga=g=gb, Ga

↑↓=g
=Gb

↑↓, and pa=1 /4.

FIG. 3. Planar diagrams generated by averaging the term

T̂r��t̂t̂†�2�.

FIG. 4. Diagrammatic representation of F	1	2

L �top� and F	1	2

R

�bottom�.
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Fs
L � Tr�F	1	2

L � ,

Fs
R � Tr�F	1	2

R � , �34�

and

Fs
LR � Tr�F	1	2

L �Tr�F	3	4

R � . �35�

For the first diagram, we define the 4�4 matrix

Ts1s2

1 � Tr�F	1	2

L F	3	4

L � , �36�

which does not represent a central kernel.
The matrix in Eq. �31�, has rows and columns set by the

indices �	4 ,	5 ,	6 ,	7� and �	1 ,	2 ,	7 ,	8�, respectively. As
for the matrix in Eq. �32�, the rows are determined by
�	2	3	4	5� and the columns by �	1	6�. Although there is a
great number of elements in the above defined matrices, just
a few of them are independent. In particular, the matrix de-
fined in Eq. �31� has just eleven independent elements. Note
that we need second order 
 parameters to calculate the ma-
trices of Eqs. �31�–�33�. The algebraic expressions corre-
sponding to the diagrams in Fig. 3 are shown in Table I. The
coefficients W1=1 /N and W2=−1 /N3 are used to account for
the weight of each diagram. The multiplicity of each kind of
diagram is also represented. For the sake of concreteness, let
us analyze in more detail two particular, physically relevant
cases. In both of them, we assume contacts with different
polarizations.

1. Ideal ballistic contacts

Using the above diagrams the Fano factor, defined as the
ratio �P� /2eV�G�, can be written as

Fbal��� =


n=0

8

En
bal sin2n��

2
�


n=0

8

Hn
bal sin2n��

2
�

, �37�

where the coefficients En
bal and Hn

bal are polynomial functions
of the polarization parameters pa and pb, which are shown in
the Appendix. Note that the maximum value of Fbal�0� is 1/4,
which corresponds to the Fano factor of a chaotic quantum
dot coupled to two normal reservoirs. Note that for �=0, if
we keep pa fixed and vary pb from pa to 0 we observe that
the Fano factor falls monotonically. On the other hand, if pb
is increased from pa to 1, the Fano factor behaves nonmono-
tonically, passing through a minimum. These behaviors can

be seen in Fig. 5. In the particular case of symmetric con-
tacts, i.e., with the same number of open channels, Ref. 7
reported a critical value of the polarization, pc=1 /3, at
which the monotonicity of the Fano factor with respect to
cos � disappears. At this critical polarization a maximum in
Fbal��� appears at �=0, which moves toward �=� as p varies
from pc to 1. This feature remains in the asymmetric case, as
we show in Fig. 5 and in the diagram of Fig. 6. The solid line
in this diagram separates the monotonic from the nonmono-

TABLE I. Algebraic expressions for diagrams showed in Fig. 3
including its multiplicity.

1 W2FR ·T 1 · �FR��

2 W1
4FLR ·T 2 · �FLR��

3 2W1
3FLR ·T 3 · �FL��

4 2W1
3FLR ·T 4 · �FR��

5 W1
2FL ·T 5 · �FL��

6 W1
2FR ·T 6 · �FR�� 0.18

0.21

0.24

0.27

-1 -0.5 0 0.5 1

F
ba

l

cos (θ)

pb=1/4

pb=1/2

pb=3/4

pb=1

0.5

0.55

0.6

0.65

-1 -0.5 0 0.5 1

F
tu

n

cos (θ)

pb=1/4

pb=1/2

pb=3/4

pb=1

FIG. 5. Fano factor for ideal ballistic contacts �top� and tunnel
junctions �bottom�, in units of F0. We fix pa= 1

4 and different values
of pb are considered in both cases.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

p
a

pb

MONOTONIC

NONMONOTONIC

FIG. 6. Transition between monotonic and nonmonotonic be-
havior with respect to the angle between the magnetizations of the
reservoirs. The dotted line represents the symmetric case.
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tonic behavior. The dotted line represents the symmetric
case.

2. Tunnel junctions

In this case the Fano factor is given by

Ftun��� =


n=0

5

En
tun sin2n��

2
�


n=0

4

Hn
tun sin2n��

2
�

, �38�

where the coefficients En
bal and Hn

bal are shown in the Appen-
dix. In the symmetric case Eq. �38� reduces to

Ftun��� =
1

2
�1 + p2 sin2�

2
� , �39�

in agreement with Ref. 7. Note that Ftun�0� reaches its mini-
mum value of 1/2 when pa= pb, thus any difference between
the polarizations tends to enhance the Fano factor. On the
other hand, Ftun��� can vary from a minimum value 1/2 to a
maximum 1. Despite the complicated angular dependence of
Eq. �38�, the behavior of Ftun��� as a function of cos � for
different polarizations is very similar to the above symmetric
case, although the linear dependence is replaced by a weak
nonlinear interpolation between the values at collinear con-
figurations, as shown in the Fig. 7. We observed that the
deviations from the linear interpolation is less than 3% �see
Fig. 8�. They are enhanced when one of the polarizations is
close to 1. The relative deviation is defined by

DR =
�Ftun��� − Y����

Y���
,

where Y��� is the linear interpolation function.

V. CONCLUSIONS

We introduced a stub model to describe a normal chaotic
cavity connected to an arbitrary number of normal or non-
collinear ferromagnetic reservoirs. For each contact a re-

duced set of parameters, sufficient to calculate any planar
diagram, is defined and explicit expressions of this set are
given for ideal ballistic contacts and tunnel junctions. The
conductance and shot-noise power were explicitly calculated
for a two terminal device with noncollinear ferromagnetic
reservoirs. The general analytic expressions reproduce
known results of the literature in the relevant limits. We ana-
lyzed in more detail the behavior of the shot-noise power in
the case of contacts with different polarizations. We observed
that the Fano factor exhibits a transition between monotonic
and nonmonotonic behaviors as a function of the reservoir’s
relative magnetization angle. A diagram of this transition in
the plane of the polarization parameters is shown.

There are a number of ways in which our approach can be
extended. The central idea is to think of it as the most natural
quantum-mechanical generalization of semiclassical circuit
theory with probability amplitudes replacing probabilities in
the concatenation rules and balance equations. An important
point is that the effects of the spin-flip scattering �relevant in
practical devices� and a magnetic field in the cavity could in
principle be included without affecting the efficiency of the
diagrammatic calculations through the introduction of an ad-
ditional stub,26 which can be manipulated in our formalism
as an additional terminal. Other applications of our formal-
ism include hybrid systems with superconductors, normal
metals, and ferromagnetic reservoirs.

It is interesting to compare our approach with that of Ref.
13 since both address the problem of optimizing the random
scattering matrix description to enhance its performance in
comparison with quasiclassical techniques. While both ap-
proaches can calculate efficiently the conductance, the au-
thors of Ref. 13 did not calculate the shot-noise power,
which is the central result of our work and provides a crucial
benchmark as far as calculational efficiency goes. On the
other hand, the approach of Ref. 13 can deal very efficiently
with spin-flip scattering and multilayer structures and we did
not include these topics in our analysis. Finally, because of

0.5

0.6

0.7

0.8

0.9

-1 -0.5 0 0.5 1

F
tu

n

cos (θ)

FIG. 7. Fano factor with tunnel junctions for pa=1 and pb

=17 /20 �solid line� and the interpolation between the values at
collinear configurations �dotted lines�.

FIG. 8. Relative deviation of Ftun��� with respect to a linear
interpolation, fixing pa=1.
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its direct link with the diagrammatic technique our approach
can also be used to calculate efficiently both weak-
localization corrections and mesoscopic fluctuations, a prob-
lem which was not discussed in Ref. 13. In summary, we
believe that these two random scattering matrix approaches
complement each other nicely and both offer promising per-
spectives in the near future.
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APPENDIX: MATRIX L AND TABLES OF COEFFICIENTS

The following symmetry requirements hold for the ele-
ments of the matrix L:

L12 = L21 = L13
� = L31

� ,

L14 = L41 = L23 = L32,

L24 = L42 = L34
� = L43

� ,

TABLE II. Coefficients that contribute to Fbal���.

E0
bal=2�pa−2+ pb��pa

5pb+ pa
4pb

2−2pa
4−2pbpa

3−4pb
2pa

2+ pa
2pb

4+5pa
2−2pb

3pa+ pb
5pa+2pbpa−2pb

4−4+5pb
2��pa+ pb+2�4

E1
bal=4pbpa�48+24pa+24pb−20pa

5pb−27pa
4pb

2+64pbpa
3+84pb

2pa
2−27pa

2pb
4+64pb

3pa−20pb
5pa−72pbpa+30pa

4−68pa
2+30pb

4−68pb
2+9pb

4pa

−18pa
3−18pb

3−16pa
3pb

3−2pb
2pa

3−2pb
3pa

2+9pa
4pb−22pb

2pa−22pbpa
2+ pa

5+ pb
5− pb

6− pa
6+4pa

4pb
3+4pb

4pa
3+3pa

5pb
2+3pa

2pb
5+ pa

6pb+ pb
6pa��pa+ pb+2�3

E2
bal=−4pbpa�64+80pa+80pb−102pa

5pb−193pa
4pb

2+372pbpa
3+372pb

2pa
2−193pa

2pb
4+372pb

3pa−102pb
5pa−416pbpa+42pa

4−104pa
2+42pb

4−104pb
2

+294pb
4pa−92pa

3−92pb
3−196pa

3pb
3+396pb

2pa
3+396pb

3pa
2+294pa

4pb−388pb
2pa−388pbpa

2+30pa
5+30pb

5+ pb
6+ pa

6−104pa
4pb

3−104pb
4pa

3+28pa
6pb

2

+35pa
5pb

3+28pa
2pb

6+ pa
7pb−178pa

5pb
2−178pa

2pb
5+16pa

4pb
4+35pa

3pb
5−38pa

6pb−38pb
6pa+ pb

7pa��pa+ pb+2�2

E3
bal=16pbpa�pa+ pb+2��6pa

5pb−50pa
4pb

2+148pbpa
3+272pb

2pa
2−50pa

2pb
4+148pb

3pa+6pb
5pa−208pbpa+12pa

4−16pa
2+12pb

4−16pb
2+236pb

4pa−8pa
3

−8pb
3+132pa

3pb
3+562pb

2pa
3+562pb

3pa
2+236pa

4pb−240pb
2pa−240pbpa

2+10pa
5+10pb

5+2pb
6+2pa

6−4pa
5pb

4−258pa
4pb

3−258pb
4pa

3−52pa
6pb

2+11pb
7pa

2

+49pa
3pb

6−4pa
4pb

5−111pa
5pb

3+49pa
6pb

3−52pa
2pb

6−5pa
7pb−319pa

5pb
2−319pa

2pb
5+11pa

7pb
2−64pa

4pb
4−111pa

3pb
5−39pa

6pb−39pb
6pa−5pb

7pa�

E4
bal=−16pbpa�49pa

5pb+123pa
4pb

2+92pbpa
3+704pb

2pa
2+123pa

2pb
4+92pb

3pa+49pb
5pa−96pbpa+12pa

4+12pb
4+196pb

4pa+8pa
3+8pb

3+1014pa
3pb

3

+1278pb
2pa

3+1278pb
3pa

2+196pa
4pb−128pb

2pa−128pbpa
2+6pa

5+6pb
5+ pb

6+ pa
6+5pb

2pa
8+47pb

4pa
6−418pa

5pb
4+81pa

7pb
3+81pb

7pa
3−624pa

4pb
3−624pb

4pa
3

−372pa
6pb

2−18pb
7pa

2+5pb
8pa

2+12pa
3pb

6−186pb
5pa

5−418pa
4pb

5−833pa
5pb

3+12pa
6pb

3−372pa
2pb

6−11pa
7pb−794pa

5pb
2−794pa

2pb
5−18pa

7pb
2−848pa

4pb
4

−833pa
3pb

5+47pb
6pa

4−30pa
6pb−30pb

6pa−11pb
7pa�

E5
bal=64pa

3pb
3�88+120pa+120pb+13pa

5pb+14pa
4pb

2−128pbpa
3−270pb

2pa
2+14pa

2pb
4−128pb

3pa+13pb
5pa+68pbpa−37pa

4−14pa
2−37pb

4−14pb
2

+19pb
4pa−96pa

3−96pb
3−94pa

3pb
3−154pb

2pa
3−154pb

3pa
2+19pa

4pb−144pb
2pa−144pbpa

2− pa
5− pb

5�

E6
bal=−64pa

3pb
3�16−7pb

4+24pb+3pa
5pb+24pa−18pa

3−234pb
2pa

2+12pa
4pb

2−18pb
3+3pb

5pa+12pa
2pb

4+14pb
4pa−20pbpa−56pb

3pa−82pa
3pb

3−126pb
2pa

3

−7pa
4−126pb

3pa
2+14pa

4pb−102pb
2pa−56pbpa

3−102pbpa
2�

E7
bal=258pb

4pa
4�pa+1��pb+1��pb

2−8pbpa−6pb+ pa
2−6−6pa�

E8
bal=258pa

4pb
4�pb+1�2�pa+1�2

H0
bal= �pa+ pb+2�6�pa

2+ pb
2−2��pa−2+ pb�3

H1
bal=−4pbpa�7pb

2− pb−14+ pb
2pa− pa+ pbpa

2+7pa
2��pa−2+ pb�2�pa+ pb+2�5

H2
bal=4pbpa�pa−2+ pb��pa

4pb+4pa
4+27pb

2pa
3− pa

3+80pbpa
3−31pbpa

2+8pb
2pa

2−24pa
2+27pb

3pa
2+4pa+80pb

3pa+ pb
4pa−31pb

2pa−160pbpa−24pb
2+4pb

4

+32− pb
3+4pb��pa+ pb+2�4

H3
bal=−16pb

2pa
2�pa+ pb+2�3�21pa

4+9pa
4pb+75pb

2pa
3−9pa

3+122pbpa
3−111pbpa

2+42pb
2pa

2−126pa
2+75pb

3pa
2+36pa+122pb

3pa+9pb
4pa−111pb

2pa

−244pbpa−126pb
2+21pb

4+168−9pb
3+36pb�

H4
bal=16pb

2pa
2�96+72pa+72pb+3pa

5pb+108pa
4pb

2+192pbpa
3−82pb

2pa
2+108pa

2pb
4+192pb

3pa+3pb
5pa−600pbpa+9pa

4−60pa
2+9pb

4−60pb
2+168pb

4pa

−42pa
3−42pb

3+338pa
3pb

3+506pb
2pa

3+506pb
3pa

2+168pa
4pb−582pb

2pa−582pbpa
2+6pa

5+6pb
5��pa+ pb+2�2

H5
bal=−64pa

3pb
3�−84−72pa−72pb+15pbpa

3+131pbpa
2+21pb

3+110pb
2pa

2+131pb
2pa+27pa

2+21pa
3+50pbpa+27pb

2+15pb
3pa��pa+ pb+2�2

H6
bal=64pa

3pb
3�−16−14pa−14pb+3pbpa

3+82pbpa
2+4pb

3+78pb
2pa

2+82pb
2pa+5pa

2+4pa
3+66pbpa+5pb

2+3pb
3pa��pa+ pb+2�2

H7
bal=−1792pa

4pb
4�pb+1��pa+1��pa+ pb+2�2

H8
bal=256pa

4pb
4�pb+1��pa+1��pa+ pb+2�2
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L22 = L33
� . �A1�

There are just six free elements whose expressions are given
below:

L11 = Na − Ga
↑↑ + cos4�

2
�Nb − Gb

↑↑� + sin4�

2
�Nb − Gb

↓↓�

+ 2 sin2�

2
cos2�

2
�Nb − Re�Gb

↑↓�� , �A2�

L22 = Na − Ga
↑↓ + cos4�

2
�Nb − Gb

↑↓� + sin4�

2
�Nb − �Gb

↑↓���

+ sin2�

2
cos2�

2
�2Nb − Gb

↑↑ − Gb
↓↓� , �A3�

L44 = Na − Ga
↓↓ + cos4�

2
�Nb − Gb

↓↓� + sin4�

2
�Nb − Gb

↑↑�

+ 2 sin2�

2
cos2�

2
�Nb − Re�Gb

↑↓�� , �A4�

L12 = sin
�

2
cos

�

2
�cos2�

2
�Gb

↑↓ − Gb
↑↑� − sin2�

2
��Gb

↑↓�� − Gb
↓↓�� ,

�A5�

L24 = sin
�

2
cos

�

2
�cos2�

2
�Gb

↓↓ − Gb
↑↓� + sin2�

2
��Gb

↑↓�� − Gb
↑↑�� ,

�A6�

L14 = sin2�

2
cos2�

2
�2 Re�Gb

↑↓� − Gb
↑↑ − Gb

↓↓� . �A7�

The coefficients of Eq. �37� and �38� are shown in Tables II
and III, respectively.
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